X-PURE® GELMA A CUSTOMIZABLE AND CO-DEVELOPMENT **SOLUTION**

GelMA biomaterials have key features that make them widely applicable in biomedical and clinical applications:

- Suitable biological properties;
- Tunable physical characteristics.

Gelatin methacryloyl (GelMA) is a polymerizable hydrogel material derived from collagen, a component of the extracellular matrix (ECM).

X-Pure® GelMA: The first GMP¹-grade hydrogel with ultrahigh purity levels

Promotes cell adhesion and proliferation

Ultralow levels of endotoxins and impurities

Biodegradable and biocompatible

Batch-to-batch consistency

Customizable mechanical properties

The physical characteristics of the hydrogel can influence cell differentiation and cellular functions

Both Degree of Modification (DoM) and Molecular Weight (MW) determine the stiffness² and degradation of GelMA hydrogels.

Custom-made solutions

At Rousselot, we work in close collaboration with our customers to determine the right product specifications and properties.

There is a unique and tailor-made X-Pure® GelMA to support your applications:

	Degree of Modification		
Molecular Weight	40%	60%	80%
90 kDa	90P40	90P60	90P80
160 kDa	160P40	160P60	90P80

¹ IPEC – Excipient Good Manufacturing Practices Guide, 2017 as of end 2021 ² Defined as the modulus of elasticity or Young's modulus, expressed in kilopascal (kPa).

Fine-tuning hydrogel properties is essential for cell culturing.

Different cell types require different environments3.

³ Adapted from Int. J. Mol. Sci. 2015, 16, 15997-16016; doi:10.3390/ijms160715997

Elastic moduli can be adjusted by varying GelMA concentration⁴.

⁴ Source: Zhao et al., 2015, DOI: 10.1002/adhm.201500005

