

X-PURE[®] GELMA A CUSTOMIZABLE AND **CO-DEVELOPMENT** SOLUTION

GelMA biomaterials have key features that make them widely applicable in biomedical and clinical applications:

- Suitable biological properties;
- Tunable physical characteristics.

Gelatin methacryloyl (GelMA) is a polymerizable hydrogel material derived from collagen, a component of the extracellular matrix (ECM).

X-Pure[®] GelMA: The first GMP¹-grade hydrogel with ultrahigh purity levels

Ultralow levels of endotoxins and impurities

Biodegradable and biocompatible

The physical characteristics of the hydrogel can influence cell differentiation and cellular functions

Both Degree of Modification (DoM) and Molecular Weight (MW) determine the stiffness² and degradation of GelMA hydrogels.

Custom-made solutions

At Rousselot®, we work in close collaboration with our customers to determine the right product specifications and properties.

There is a unique and tailor-made X-Pure[®] GelMA to support your applications:

Molecular Weight (kDa)	160	160	160	90	Custom
Degree of Modification (%)	40	60	80	60	Custom

¹ IPEC – Excipient Good Manufacturing Practices Guide, 2017 as of end 2021 ² Defined as the modulus of elasticity or Young's modulus, expressed in kilopascal (kPa).

Fine-tuning hydrogel properties is essential for cell culturing. Different cell types require different environments³.

³ Adapted from Int. J. Mol. Sci. 2015, 16, 15997-16016; doi:10.3390/ijms160715997

Elastic moduli can be adjusted by varying GelMA concentration⁴.

⁴ Source: Zhao et al., 2015, DOI: 10.1002/adhm.201500005

biomedical@rousselot.com